Show simple item record

dc.creatorQuaas, A.
dc.date.accessioned2020-08-14T20:43:13Z
dc.date.available2020-08-14T20:43:13Z
dc.date.issued2004
dc.identifier.urihttp://hdl.handle.net/10533/246002
dc.description.abstractIn this article we prove existence of positive solutions for the nonlinear elliptic equation ℳ λ,Λ + (D 2 u)-γu+f(u)=0inΩ,u=0on∂Ω, where ℳ λ,Λ + denote Pucci’s extremal operator with parameters 0<λ≤Λ and Ω is convex smooth domain in ℝ N , N≥3. The result applies to a class of nonlinear functions f, including the model cases: i) γ=1 and f(s)=s p , 1<p≤p + ; and ii) γ=0, f(s)=αs+s p , 1<p≤p + , and 0≤α<μ 1 + . Here p + =N ˜ + /(N ˜ + -2), N ˜ + =λ(N-1)/Λ+1, and μ 1 + is the first eigenvalue of ℳ λ,Λ + in Ω. Analogous results are obtained for the operator ℳ λ,Λ - .
dc.language.isoeng
dc.relationinstname: ANID
dc.relationreponame: Repositorio Digital RI2.0
dc.relation.urihttps://www.researchgate.net/publication/258230883_Existence_of_a_positive_solution_to_a_semilinear_equation_involving_Pucci's_operator_in_a_convex_domain
dc.titleExistence of a positive solution to a semilinear equation involving pucci's operator in a convex domain
dc.typeArticulo
dc.identifier.folio15000001
dc.description.conicytprogramFONDAP
dc.rights.driverinfo:eu-repo/semantics/openAccess
dc.title.journalDifferential and Integral Equations.
dc.type.driverinfo:eu-repo/semantics/article
dc.description.shortconicytprogramFONDAP
dc.type.openaireinfo:eu-repo/semantics/publishedVersion
dc.description.centroCMM


Files in this item

FilesSizeFormatView

There are no files associated with this item

This item appears in the following Collection(s)

Show simple item record