Show simple item record

dc.creatorCardenas, Juan Pablo
dc.creatorCovarrubias Pizarro, Paulo Cesar
dc.creatorDemergasso Semenzato, Cecilia Susana
dc.creatorHolmes, David Salway
dc.creatorLevican Jaque, Gloria Paz
dc.creatorQuatrini Nyqvist, Raquel Clara
dc.creatorShmaryahu, Amir
dc.date.accessioned2016-12-27T21:49:45Z
dc.date.available2016-12-27T21:49:45Z
dc.date.issued2011
dc.identifier.isbn9787548703563 
dc.identifier.urihttp://hdl.handle.net/10533/165331
dc.description.abstractBioleaching acidophiles inhabit environments with unusually high concentrations of iron that can potentially cause oxidative stress via the Fenton reaction in which dangerous reactive oxygen species (ROS) are generated. ROS can cause damage to proteins, nucleic acids, lipids and other macromolecules and thus have deleterious effects on cell growth and survival. Many of these microorganisms are chemolithotrophs with unusually high oxygen consumption rates that may exacerbate the problem of oxidative stress. Although some knowledge has been gained in recent years regarding the oxidative stress response in a few acidophiles, the general strategies used by them to face ROS challenges are still inadequately understood. Comparative genomics and multiple bioinformatic tools were used to explore 44 sequenced genomes of acidophilic bacteria and archaea in order to reconstruct their individual oxidative stress responses and to identify conserved strategies. The analyses revealed that acidophiles lack genes encoding typical oxidative stress response regulators and have an underrepresentation of classical ROS consumption enzymes (e.g. catalases) although they have a complete repertoire of repair systems for macromolecules (DNA, proteins and lipids). This suggests that stress mitigation is an active strategy in acidophiles confronting unavoidable ROS formation in their environment. Insights into the oxidative stress response in bioleaching acidophiles may contribute to a better understanding of the aspects that influence fitness of the microbial consortium driving bioleaching.Bioleaching acidophiles inhabit environments with unusually high concentrations of iron that can potentially cause oxidative stress via the Fenton reaction in which dangerous reactive oxygen species (ROS) are generated. ROS can cause damage to proteins, nucleic acids, lipids and other macromolecules and thus have deleterious effects on cell growth and survival. Many of these microorganisms are chemolithotrophs with unusually high oxygen consumption rates that may exacerbate the problem of oxidative stress. Although some knowledge has been gained in recent years regarding the oxidative stress response in a few acidophiles, the general strategies used by them to face ROS challenges are still inadequately understood. Comparative genomics and multiple bioinformatic tools were used to explore 44 sequenced genomes of acidophilic bacteria and archaea in order to reconstruct their individual oxidative stress responses and to identify conserved strategies. The analyses revealed that acidophiles lack genes encoding typical oxidative stress response regulators and have an underrepresentation of classical ROS consumption enzymes (e.g. catalases) although they have a complete repertoire of repair systems for macromolecules (DNA, proteins and lipids). This suggests that stress mitigation is an active strategy in acidophiles confronting unavoidable ROS formation in their environment. Insights into the oxidative stress response in bioleaching acidophiles may contribute to a better understanding of the aspects that influence fitness of the microbial consortium driving bioleaching.Bioleaching acidophiles inhabit environments with unusually high concentrations of iron that can potentially cause oxidative stress via the Fenton reaction in which dangerous reactive oxygen species (ROS) are generated. ROS can cause damage to proteins, nucleic acids, lipids and other macromolecules and thus have deleterious effects on cell growth and survival. Many of these microorganisms are chemolithotrophs with unusually high oxygen consumption rates that may exacerbate the problem of oxidative stress. Although some knowledge has been gained in recent years regarding the oxidative stress response in a few acidophiles, the general strategies used by them to face ROS challenges are still inadequately understood. Comparative genomics and multiple bioinformatic tools were used to explore 44 sequenced genomes of acidophilic bacteria and archaea in order to reconstruct their individual oxidative stress responses and to identify conserved strategies. The analyses revealed that acidophiles lack genes encoding typical oxidative stress response regulators and have an underrepresentation of classical ROS consumption enzymes (e.g. catalases) although they have a complete repertoire of repair systems for macromolecules (DNA, proteins and lipids). This suggests that stress mitigation is an active strategy in acidophiles confronting unavoidable ROS formation in their environment. Insights into the oxidative stress response in bioleaching acidophiles may contribute to a better understanding of the aspects that influence fitness of the microbial consortium driving bioleaching.Bioleaching acidophiles inhabit environments with unusually high concentrations of iron that can potentially cause oxidative stress via the Fenton reaction in which dangerous reactive oxygen species (ROS) are generated. ROS can cause damage to proteins, nucleic acids, lipids and other macromolecules and thus have deleterious effects on cell growth and survival. Many of these microorganisms are chemolithotrophs with unusually high oxygen consumption rates that may exacerbate the problem of oxidative stress. Although some knowledge has been gained in recent years regarding the oxidative stress response in a few acidophiles, the general strategies used by them to face ROS challenges are still inadequately understood. Comparative genomics and multiple bioinformatic tools were used to explore 44 sequenced genomes of acidophilic bacteria and archaea in order to reconstruct their individual oxidative stress responses and to identify conserved strategies. The analyses revealed that acidophiles lack genes encoding typical oxidative stress response regulators and have an underrepresentation of classical ROS consumption enzymes (e.g. catalases) although they have a complete repertoire of repair systems for macromolecules (DNA, proteins and lipids). This suggests that stress mitigation is an active strategy in acidophiles confronting unavoidable ROS formation in their environment. Insights into the oxidative stress response in bioleaching acidophiles may contribute to a better understanding of the aspects that influence fitness of the microbial consortium driving bioleaching.Bioleaching acidophiles inhabit environments with unusually high concentrations of iron that can potentially cause oxidative stress via the Fenton reaction in which dangerous reactive oxygen species (ROS) are generated. ROS can cause damage to proteins, nucleic acids, lipids and other macromolecules and thus have deleterious effects on cell growth and survival. Many of these microorganisms are chemolithotrophs with unusually high oxygen consumption rates that may exacerbate the problem of oxidative stress. Although some knowledge has been gained in recent years regarding the oxidative stress response in a few acidophiles, the general strategies used by them to face ROS challenges are still inadequately understood. Comparative genomics and multiple bioinformatic tools were used to explore 44 sequenced genomes of acidophilic bacteria and archaea in order to reconstruct their individual oxidative stress responses and to identify conserved strategies. The analyses revealed that acidophiles lack genes encoding typical oxidative stress response regulators and have an underrepresentation of classical ROS consumption enzymes (e.g. catalases) although they have a complete repertoire of repair systems for macromolecules (DNA, proteins and lipids). This suggests that stress mitigation is an active strategy in acidophiles confronting unavoidable ROS formation in their environment. Insights into the oxidative stress response in bioleaching acidophiles may contribute to a better understanding of the aspects that influence fitness of the microbial consortium driving bioleaching.Bioleaching acidophiles inhabit environments with unusually high concentrations of iron that can potentially cause oxidative stress via the Fenton reaction in which dangerous reactive oxygen species (ROS) are generated. ROS can cause damage to proteins, nucleic acids, lipids and other macromolecules and thus have deleterious effects on cell growth and survival. Many of these microorganisms are chemolithotrophs with unusually high oxygen consumption rates that may exacerbate the problem of oxidative stress. Although some knowledge has been gained in recent years regarding the oxidative stress response in a few acidophiles, the general strategies used by them to face ROS challenges are still inadequately understood. Comparative genomics and multiple bioinformatic tools were used to explore 44 sequenced genomes of acidophilic bacteria and archaea in order to reconstruct their individual oxidative stress responses and to identify conserved strategies. The analyses revealed that acidophiles lack genes encoding typical oxidative stress response regulators and have an underrepresentation of classical ROS consumption enzymes (e.g. catalases) although they have a complete repertoire of repair systems for macromolecules (DNA, proteins and lipids). This suggests that stress mitigation is an active strategy in acidophiles confronting unavoidable ROS formation in their environment. Insights into the oxidative stress response in bioleaching acidophiles may contribute to a better understanding of the aspects that influence fitness of the microbial consortium driving bioleaching.
dc.language.isoeng
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI 2.0
dc.titleCOMPARATIVE GENOMICS OF THE OXIDATIVE STRESS RESPONSE IN BIOLEACHING MICROORGANISMS
dc.typeCapitulo de libro
dc.countryCHINA
dc.bibliographicCitation.stpage162
dc.bibliographicCitation.endpage167
dc.identifier.folio11085045
dc.description.conicytprogramFONDECYT
dc.relation.projectidinfo:eu-repo/grantAgreement/Fondecyt/11085045
dc.relation.setinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93479
dc.rights.driverinfo:eu-repo/semantics/openAccess
dc.type.driverinfo:eu-repo/semantics/bookPart
dc.description.shortconicytprogramFONDECYT
dc.title.libroBIOHYDROMETALLURGY: BIOTECH KEY TO UNLOCK MINERAL RESOURCES VALUE
dc.creator.libroJiang, Tao
dc.creator.libroLiu, Xueduan
dc.creator.libroQin, Wenqing
dc.creator.libroQiu, Guanzhou
dc.creator.libroWang, Haidong
dc.creator.libroYang, Yu
dc.publisher.editorialCENTRAL SOUTH UNIVERSITY PRESS


Files in this item

FilesSizeFormatView

There are no files associated with this item

This item appears in the following Collection(s)

Show simple item record